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Machine Learning (ML) and Artificial Intelligence (AI) have 
come to the forefront of data analytics with the promise of 
generating new medical insights. However, for healthcare 
data, patient data security is paramount due to the GDPR and 
similar regulations. Traditional methods of data consolidation 
for Machine Learning/ AI modelling into a single warehouse 
or a data lake are o!en not possible even with anonymised data 
due to data protection rules. The new, emerging alternative is a 
federated in situ data analytics construct in which healthcare 
data are anonymised within the care facility and accessed via 
a secure cloud application. This paper demonstrates how this 
ensures data security within the original data domain, while 
allowing analytics for modelling and AI to be applied in a 
federated fashion.

Introduction – The Goal of Healthcare RWD is to Gain Insights in 
the Patient’s Clinical Journey 
Increasingly, understanding the patient journey through their 
healthcare system is being recognised as critical to modeling and 
understanding di"erent patient outcomes and care metrics. Patients 
are complex, with not just a single factor between diagnosis, 
treatment, and outcome. Especially for chronic diseases, the social 
demographics, the pharmacogenomics , the time between diagnosis 
and treatment, the distance to a healthcare provider, existing 
comorbidities and health risks play in the longitudinal metrics of care 
and probable outcomes.

AI/ML to Generate Medical Insights… 
While Maintaining Patient Data Security  
and Privacy

Healthcare has become multifactorial and is by nature an open 
system, with dynamic, sometimes unpredictable, and o!en chaotic 
behaviour. The recent and ongoing COVID-19 pandemic is a perfect 
example of this: the evolution and spread of the vaccine has not been 
predictable or anticipated, nor has the uptake of vaccine treatments 
been global or su#cient on a voluntary basis to prevent the further 
spread of the virus.

A doctor’s first assessment of a patient o!en refers to any previous 
records possible with the first review looking for any immediate changes 
or reported conditions. However, this retrospective review, must now 
become more detailed and more extensive, especially considering 
multiple conditions or comorbidities the patient may present. This is 
o!en more than a single physician in a single visit can manage but is 
increasingly available through digital data sources (provided below) that 
physicians, caregivers, epidemiologists, and healthcare researchers can 
use to model, test, and validate various healthcare questions. 

In their article on understanding the care pathway/patient journey, 
the authors point out that “Quantitative analyses carried out to generate 
deeper insights into any unmet needs and patient subpopulations that 
may benefit most from the new treatment... may involve:

• pharmacy claims data analyses
• electronic medical record database analyses
• retrospective patient chart reviews
• analysis of registry data
• cohorts or longitudinal studies

Figure 11 A typical care pathway starting with initial symptoms, diagnosis and progressing through treatment methodologies into various outcome 
metrics. The overall patient journey can be predictive to outcomes and overall patient care metrics.
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Table 1: Population of the EU5 and the USA2

• epidemiology or treatment pa$ern studies
• burden of illness studies.”1

The advent of the digitalisation of patient care data has much 
improved the prospects of showing a physician a unified overview 
of a patient’s medical care journey. However, the relatively recent 
General Data Protection Regulation (GDPR) in the EU is a herald for 
tighter personal data protections than before, and this has now to be 
accommodated for us to achieve this goal.

Two Regions, Two Models – 
How GDPR Has Changed What’s Needed
With over 330 million citizens, the US block of healthcare data largely 
exceeds any other country, except China and India, and is the single 
largest high reimbursement country in the world. The EU plus 1 
countries, which traditionally means the UK, France, Germany, Italy, 
and Spain, are also considered as high healthcare reimbursement 
markets, but both individually and collectively their size is still slightly 
less than the USA.

Although together slightly smaller than the USA, the disparate 
healthcare systems, languages, regulations, and standards of care in 
the EU, tend toward more fragmented healthcare data sources and 
RWD availability compared to the USA. 

Therefore, the use of healthcare data across these two large blocks 
of high reimbursement healthcare patient populations, that are largely 
separate and independently regulated, has become highly challenging. 
When it comes to the use of real-world patient data for the generation 
of medical insights, HIPAA healthcare data regulations (in the USA) 
allows greater secondary use including implied consent, while GDPR 
regulations (in the EU) require explicit patient permission for data use 
and have strict provisions for personal and private data protections. 

Digital Healthcare as the Next Forefront 
While digital data is clearly important to healthcare, what comes into 
question is its application across disparate healthcare systems and 
regulations. There are increasingly more data and more capabilities 
unlocked by them. However, technological enablement across one 
healthcare system, such as the US, does not immediately mean global 
enablement across separate, disparate, and di"erently regulated 
healthcare systems. GDPR has a significant impact on data access 
and usage, not only within the EU but regions adopting similar 
regulations, and even within the US. 

The globalisation of digital healthcare data does not necessarily 
mean equal access to healthcare data. Data access and use 
permissions di"er across di"erent parts of the world, and even 
country to country, disparate systems of healthcare are still the rule, 
and are just as fragmented as the general accessibility of healthcare 
itself on a global scale.

Our purpose is to examine the disparate systems for high 
reimbursement healthcare in the US and the EU, both of which have 
their pros and cons. 

HIPAA and GDPR Di!erences in a Nutshell 
In 2012, a now infamous story appeared of how the retailer Target 
identified from shopping pa$erns that a family’s teenage daughter 
was pregnant.3 Shopping habits and consumer data being used to 
segment and target clients based upon their purchasing pa$erns are 
now common not only in retail sales.4 However, these purchasing 
pa$erns are also a key metric in credit card fraud protection 
programs,5 in the same way that patient prescription pa$erns can be 
used to understand a patient's care journey. Social media companies 
such as Facebook, Google, and others readily use their consumer data 
to develop targeted consumer demographics for their own messaging 
and to sell advertising.

One of the key di"erences between HIPAA and GDPR is that 
the la$er requires explicit permission from an individual for their 
personal data to be collected and used (unless covered by specific 
GDPR exemptions), as ownership intrinsically belongs to the 
individual. GDPR imposes significant penalties for collection and 
use of personal and private data without proper consent. Whereas 
in the US and other countries, the use of a data application on your 
smart device includes an inherent agreement in the Service-Level 
Agreement (SLA) code for the application that data can be collected 
and re-used, in the EU, the philosophy is that the consumer controls 
third party use of their own data and can decide to retract their 
permission at any time.

The impact on our story is that patients always have implicit rights 
to and ownership of their data. This impacts the use of personal and 
private information, as well as pseudonymised data, as these carry a 
potential risk of potential re-identification to protect the security of 
healthcare data. 

Data Harmonisation versus Data Interoperability 
US healthcare data are extremely harmonised and readily available 
through primary resources and a variety of data resellers as claims 
and EMR data. There is much more variation in the data from the 
big five European countries based upon local language and coding 
specifics, and subject to local and national data use restrictions in 
addition to the GDPR data privacy and protection provisions. US 
data use provisions allow sale and direct ownership transfer of data, 
whereas under the GDPR provisions and patients’ rights, the actual 
transfer of ownership rights is not possible. This requires the creation 
of a structure for interoperability of data where harmonisation is not 
possible.

Data Sharing without Sharing 
In the US, large-scale data aggregation is readily possible and 
common; however, in the EU, as we have seen, this is significantly 
more di#cult due to tighter patient privacy regulations and has 
further challenges in data harmonisation across multiple languages, 
coding, and reimbursement practices. Increasingly, the best option is 
to maintain the original healthcare data in situ and develop searches 
and integration models across a federated network of originating 
data sites, regardless of whether they are government or healthcare 
institutional sites. 

The result is that a federated network capability in the EU 
holds more potential for success (this aligns with the federated 
structure of the EU, itself) than the harmonised data and common 
data structure of the US. The EU is a hybrid system of negotiated 
agreements between governments and a supranational union and 
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therefore more like a federated network. The United States is a single 
constitutional federal republic. In some sense this mimics Alexis de 
Tocqueville’s comments on the tyranny of the majority in the US.6 

The US healthcare system is the largest, has the most available 
data, and is the most easily accessible, and therefore sets the global 
benchmark. By comparison, the EU’s structure and privacy provisions 
do not allow it similar capabilities or clout.

The Application of AI to Healthcare Data 
The inherently di"erential approaches to patient rights and data 
protections, which lead to di"erent approaches in both technology 
and data application use cases between the US and EU, are also 
evident in the application of ML/AI in Healthcare in the two regions. 

In the United States, the large population living under limited 
privacy controls and a harmonised healthcare system means that 
healthcare data is plentiful and readily available, so traditional AI 
methods of data aggregation, pooling and sampling are possible. 
In the EU, multifarious coding, languages, ontologies, and data 
movement restrictions make traditional AI methods impractical. The 
solution in the region would have to be in the various alternatives to 
the transfer of data, such as Data Fabric technology and Federated 
Learning. The remainder of this article will discuss these approaches.

Data Fabric
Data Fabric is a data architecture methodology that creates 
relationships across various metadata points within disparate or even 
unconnected data sources, and thereby allows specific relationship 
maps to be created and followed. An example in the context of 
healthcare data would be the ability to link patient care pa$erns in 
localised electronic healthcare records (EHRs) with geographically 
specific pharmacy claims data, and then with overlapping physician 
registry information by Zip code, thereby enabling the mapping of 
specific physician–patient diagnoses and treatments with the direct 
costs of care by treatment centercentre and location. The specific 
connectivity between the disparate data sources does not have to be 
common data elements, or primary keys, such as in a data warehouse, 
but rather common metadata pa$erns that can be mapped or linked 
into a relational “fabric” across the di"erential data landscape.

An example of this would be a federated EHR network across 
di"erent countries and languages where a composite phenotypic 
cohort model could be searched for across the di"erential metadata 
linkages. 

Data Fabric Rare Disease Use Case
Rare diseases are by nature o!en undiagnosed, misdiagnosed, 
and untreated. In addition, rare diseases are o!en heterogenous in 
symptoms and therefore hard to diagnose, leaving room for ambiguity 
in diagnoses. The delay in diagnosis that arises makes it very di#cult 
for patients, their families, and caregivers to manage their medical 
journey. Studies show that the impact of a rare disease is much wider 
than on the a"ected individual and represents a significant challenge 
for the healthcare system itself.7

In a survey of patients and caregivers in the USA and the UK, 
patients reported that it took on average of 7.6 years in the USA 
and 5.6 years in the UK to get a proper diagnosis, during which 
patients typically visited eight physicians (four primary care and 
four specialist) and received two to three misdiagnoses.8 Of the 
7,000 known rare diseases, 90% do not have an FDA-approved 
medication, which means patients must live with no treatment 
or go with o"-label use of existing medicines to treat their 
symptoms.9 Patients with rare diseases can live up to 20 to 30 
years before diagnosis, or even entirely undiagnosed during their 
lifetime.10,11,12

The Data Fabric composite cohort model, which may represent 
several di"erent phenotypic expressions of, for example, a rare 
disease, will link di"erent symptoms, treatments, and combinations 
that an undiagnosed rare disease patient has had but not responded 
to. This can be used as a predictive and relational data fabric to 
potentially find rare disease patients that have never been correctly 
identified. 

The authors of a recent white paper explain that “Data fabrics 
are particularly useful for deep learning use cases because they 
reduce “fuzziness” that o!en results from algorithmic training across 
numerous types of data.”13

Figure 2: 14 A schematic of federated learning where (a) a model is distributed across various nodes from the central cloud, to individual institutional 
incidences, with (b) as an example institution, wherein the model learns from the local data source. In step (c), the model improvements from all the 
various individual (b) nodes are shared back to the federated cloud architecture. In (d), the various models are consolidated before being redistributed 

again (a) in a repetitive cyclical pa!ern.
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Figure 3:  We applied these approaches to a sponsored search for Fabry, Pompe, Gaucher and Mucopolysaccharidosis Type 1 diseases in Turkey 
and in the United Arab Emirates, using an existing real-world data platform linking an international network of hospitals.18 The figure above shows 
traditional direct identification through diagnostic codes, and bo!om right, triangulation and predictive outcome metrics using related symptom or 

phenotype models to highlight underdiagnosed Pompe patients. 

Federated Learning
Federated Learning is the architectural framework based upon a 
single global server with decentralised data across many di"erential 
client servers. The goal of Federated Learning is to apply discrete 
models on multiple client servers and allow them to iterate and 
learn across the disparate data centers and learn collectively through 
the central global server. The advantage of this methodology is that 
data are not aggregated or pooled but stay locally in the original host 
server and all that is transacted is the model outputs or learning 
from the federated framework. At the same time, models can adapt 
across disparate data centerscentres and iteratively learn across the 
aggregate without data pooling.14

The advantages to healthcare institutions as well as research 
sponsors for federated learning are significant, as highlighted below:

Healthcare Institutions  
Data stays secure with no transfer rights.
Personal and Private information remain secure.
Data access is selectable.
Encourage cooperation.

Sponsors
Access to data that is otherwise not accessible. 
Strict access to only anonymised records.
Data access is for specific purpose. 
Creates collaboration.

Federated Learning Rare Disease Use Case 
Typically, you need to look across around 10,000 features in a full 
EHR to find a relevant patient, reliably. With typical ML methods and 
standard toolsets, you expect to have to have around 50,000 “labels” 
(examples of patients with the disease in question) to allow the 
machine learning to generate a reliable model. As can immediately 
be gathered, this is an impossible threshold, as, by definition, the rare 
disease patients are very rare and o!en misdiagnosed, so “hidden” 
within the system.

The solution is to use the federated nature of the partner hospital 
network as the backbone for a federated learning layer over a cloud 
infrastructure. This is a breakthrough for patients that are likely to 
be held up in a lengthy “diagnostic odyssey,” since the models can be 
adapted to the healthcare systems now on our own platform through 
our partnerships with hospitals around the world.

It is critical to construct prediction models which are both 
accurate and interpretable. As in all medical applications, it is 
essential that clinicians understand the basis for the predictions 
and recommendations of decision-support systems. One way to 
increase interpretability of the complex models produced by modern 
ML algorithms (e.g., deep learning, ensembles) is to identify which 
predictors/features are ‘important’ to the model’s predictions 
and to quantify this importance. Within rare disease, this means 
looking at the patient clinical journey and identifying cognitive 
biomarkers, digital biomarkers and medical biomarkers that drive a 
mechanistically predictive rare disease model:

• Cognitive biomarkers are objective measurements that can be 
used to track the progression of a disease or the outcome of a 
treatment.15

• Digital biomarkers are where the actual data are informative in 
some way about the disease.

• Physical biomarkers are phenotypic features of the patients that 
are predictive of the disease.

These biomarkers are discovered by the model learning process, 
and we o!en find them out only as the model improves, so we can 
subsequently derive clinically interpretable models. The overall metric 
is to develop phenotypic models based upon actual patient journey 
that represent all the possible presentations, symptoms, and medical 
conditions, separately and in various combinations. The advantage 
of this approach over a federated network is that these models can 
be developed, shared, and learn (evolve) in a collaborative or data-
private process for collaborative learning, institutional incremental 
learning, or cyclical institutional incremental learning.16 The point 
is that federated learning enables incremental and progressive 
modelling and model learning across discrete datasets rather 
than nodes securely and e"ectively. By working with and across 
smaller datasets, the federated network creates a greater networked 
database.17 Interestingly, Federated Learning has been shown to 
reach performances comparable to traditional centralised data model 
analytics across diverse therapeutic research topics (heart failure, 
diabetes, MIMIC-III, SARS-CoV-2, Avian Influenza, Bacteremia, 
Azithromycin, and Tuberculosis), while preserving privacy.

As in the case of Federated Learning to identify rare disease 
patients that have been underdiagnosed, we have applied these 
approaches in sponsored research for lysosomal storage disorders 
including Fabry, Gaucher, POMPE, and Mucopolysaccharidosis 
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Type 1 (MPS1) in Turkey and the United Arab Emirates. The iterative 
models are being tested and now being clinically validated in studies, 
in which selected patients are tested for diagnosis as part of a clinical 
outreach study. The triangulation of potentially underdiagnosed 
patients using related symptoms/phenotypes/biomarkers, represents 
the e"ectiveness of learning to understand digital signals within 
the patient journey to be$er triage and flag patients who may not 

Figure 4: AI/ML predictive federated learning models developed by EvidNet across a Korean hospital network to predict chronic disease onset based 
upon healthcare screening metrics, with modelingmodelling and global AI optimisation based upon individual site model learning. 

normally be identified as part of traditional patient screening for 
diagnostic review.

In a further example of Federated Learning, the Korean company 
EvidNet has developed a federated learning capability across their 
hospital EHR network. In this use case, the AI/ML algorithm is 
being used to develop disease prediction models based on health 
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screening inputs to predict the likely onset of chronic diseases. 
Figure 5 shows an example of the data flow, global optimisation of 
the AI/ML model and high-level model metrics.

Conclusions
This article has discussed how disparate healthcare systems 
and access to data o!en dictate di"erent strategic approaches to 
analysis and modelling. Circumventing these constraints can be 
achieved with Data Fabric and Federated Learning, in cases where 
data cannot be readily extracted or consolidated. These methods 
are proving to be e"ective and comparable to traditional centralised 
models, meaning that di"erent approaches to data access and 
modeling can be e"ective and comparable. Likely, not one approach 
necessarily can work on a global scale, but each in concert can 
enable perspective and insight that contribute to our global vision 
and understanding of healthcare and patient care, specifically.

The larger aim of this review is to create the understanding that 
no single methodology is necessarily be$er, and that any solution 
approach needs to take into account access to data, heterogeneity 
within the data and the extent of harmonisation possible. 

The global need is for digital enablement of healthcare, be$er 
insights, patient treatments and outcomes. The patient clinical 
journey is available across many EHR systems in a SMART hospital 
reference (h$ps://healthcareglobal.com/hospitals/what-smart-
hospital). The key is making this accessible and useful for patient 
care and stratification, not solely care reimbursement. 
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